login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291962
Decimal repunits written in base 2.
9
0, 1, 1011, 1101111, 10001010111, 10101101100111, 11011001000000111, 100001111010001000111, 101010011000101011000111, 110100111110110101111000111, 1000010001110100011010111000111, 1010010110010001100001100111000111, 1100111011110101111010000000111000111
OFFSET
0,3
COMMENTS
Interpreting A002275 as binary numbers and converting to decimal gives A000225. This sequence gives the resulting terms of the "reverse" operation.
The n least significant bits of a(n) seem to converge to A088911 as n increases.
LINKS
FORMULA
a(n) = A007088(A002275(n)).
MATHEMATICA
Table[FromDigits@ IntegerDigits[Floor[10^n/9], 2], {n, 0, 12}] (* Michael De Vlieger, Sep 06 2017 *)
FromDigits[IntegerDigits[#, 2]]&/@Table[FromDigits[PadRight[{}, n, 1]], {n, 0, 20}] (* Harvey P. Dale, Apr 01 2023 *)
PROG
(PARI) a(n) = subst(Pol(binary((10^n-1)/9)), x, 10)
(Python)
def a(n): return 0 if n == 0 else int(bin(int("1"*n))[2:])
print([a(n) for n in range(13)]) # Michael S. Branicky, Apr 26 2022
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Felix Fröhlich, Sep 06 2017
STATUS
approved