login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A291961
Numbers n > 1 such that 2^lambda(n) == 1 (mod n^2), where lambda(n) is the Carmichael lambda function (A002322).
0
1093, 3279, 3511, 7651, 10533, 14209, 17555, 22953, 31599, 42627, 45643, 52665, 99463, 136929, 157995, 228215, 298389, 410787, 684645, 2053935, 3837523, 11512569, 19187615, 26862661, 34537707, 49887799, 57562845, 80587983, 134313305, 149663397, 172688535, 241763949, 249438995, 349214593, 402939915, 448990191, 748316985, 1047643779, 1208819745, 1746072965, 2244950955, 3142931337, 5238218895
OFFSET
1,1
COMMENTS
An alternative generalization of Wieferich primes (A001220).
A subsequence of A077816, since the A002322(n)|A000010(n). The first 12 terms are common.
15714656685 (see A265630) is also a term. - Michel Marcus, Sep 14 2017
MATHEMATICA
Select[Range[2, 100000], Divisible[2^CarmichaelLambda[#] - 1, #^2] &]
PROG
(PARI) isok(n) = Mod(2, n^2)^lcm(znstar(n)[2]) == 1; \\ Michel Marcus, Sep 11 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Sep 06 2017
EXTENSIONS
a(32)-a(36) from Michel Marcus, Sep 11 2017
a(37)-a(41) from Michel Marcus, Sep 12 2017
a(42)-a(43) from Michel Marcus, Sep 14 2017
STATUS
approved