login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291699
a(n) = n^n*(2*n)!/(n!*(n + 1)!).
5
1, 1, 8, 135, 3584, 131250, 6158592, 353299947, 23991418880, 1883638417518, 167960000000000, 16772331868538246, 1854655886442627072, 225005916687384753700, 29718395534545380311040, 4245313393689422607421875, 652233889532678001886494720, 107247390031799133661006687830
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] 2/(1 + sqrt(1 - 4*n*x)).
a(n) = [x^n] 1/(1 - n*x/(1 - n*x/(1 - n*x/(1 - n*x/(1 - n*x/(1 - ...)))))), a continued fraction.
a(n) = n! * [x^n] (BesselI(0,2*n*x) - BesselI(1,2*n*x))*exp(2*n*x).
a(n) = n^n*binomial(2*n,n)/(n + 1).
a(n) = A000312(n)*A000108(n).
a(n) = A290605(n,n).
a(n) ~ 4^n*n^(n-3/2)/sqrt(Pi).
MAPLE
seq(n^n*(2*n)!/n!/(n+1)!, n=0..50); # Robert Israel, Aug 30 2017
MATHEMATICA
Join[{1}, Table[n^n (2 n)!/(n! (n + 1)!), {n, 1, 17}]]
Table[SeriesCoefficient[2/(1 + Sqrt[1 - 4 n x]), {x, 0, n}], {n, 0, 17}]
Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-n x, 1, {i, 1, n}]), {x, 0, n}], {n, 0, 17}]
PROG
(PARI) a(n)=binomial(2*n, n)/(n+1)*n^n \\ Charles R Greathouse IV, Oct 23 2023
CROSSREFS
Main diagonal of A290605.
Sequence in context: A215553 A069988 A229237 * A292914 A072072 A195614
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 30 2017
STATUS
approved