Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Oct 23 2023 12:46:33
%S 1,1,8,135,3584,131250,6158592,353299947,23991418880,1883638417518,
%T 167960000000000,16772331868538246,1854655886442627072,
%U 225005916687384753700,29718395534545380311040,4245313393689422607421875,652233889532678001886494720,107247390031799133661006687830
%N a(n) = n^n*(2*n)!/(n!*(n + 1)!).
%H Robert Israel, <a href="/A291699/b291699.txt">Table of n, a(n) for n = 0..322</a>
%F a(n) = [x^n] 2/(1 + sqrt(1 - 4*n*x)).
%F a(n) = [x^n] 1/(1 - n*x/(1 - n*x/(1 - n*x/(1 - n*x/(1 - n*x/(1 - ...)))))), a continued fraction.
%F a(n) = n! * [x^n] (BesselI(0,2*n*x) - BesselI(1,2*n*x))*exp(2*n*x).
%F a(n) = n^n*binomial(2*n,n)/(n + 1).
%F a(n) = A000312(n)*A000108(n).
%F a(n) = A290605(n,n).
%F a(n) ~ 4^n*n^(n-3/2)/sqrt(Pi).
%p seq(n^n*(2*n)!/n!/(n+1)!, n=0..50); # _Robert Israel_, Aug 30 2017
%t Join[{1}, Table[n^n (2 n)!/(n! (n + 1)!), {n, 1, 17}]]
%t Table[SeriesCoefficient[2/(1 + Sqrt[1 - 4 n x]), {x, 0, n}], {n, 0, 17}]
%t Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-n x, 1, {i, 1, n}]), {x, 0, n}], {n, 0, 17}]
%o (PARI) a(n)=binomial(2*n,n)/(n+1)*n^n \\ _Charles R Greathouse IV_, Oct 23 2023
%Y Main diagonal of A290605.
%Y Cf. A000108, A000312, A001761, A061711.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Aug 30 2017