login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195614
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 2.
3
8, 136, 2448, 43920, 788120, 14142232, 253772064, 4553754912, 81713816360, 1466294939560, 26311595095728, 472142416783536, 8472251907007928, 152028391909359160, 2728038802461456960, 48952670052396866112, 878420022140682133064
OFFSET
1,1
COMMENTS
See A195500 for a discussion and references.
FORMULA
From Colin Barker, Jun 04 2015: (Start)
G.f.: 8*x / ((x+1)*(x^2-18*x+1)).
a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3). (End)
a(n) = (-4*(-1)^n - (-2+sqrt(5))*(9+4*sqrt(5))^(-n) + (2+sqrt(5))*(9+4*sqrt(5))^n)/10. - Colin Barker, Mar 04 2016
a(n) = A014445(n) * A014445(n+1) / 2. - Diego Rattaggi, Jun 01 2020
a(n) is the numerator of continued fraction [4, ..., 4, 8, 4, ..., 4] with (n-1) 4's before and after the middle 8. - Greg Dresden and Hexuan Wang, Aug 30 2021
MATHEMATICA
r = 2; z = 32;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195614, A195615 *)
Sqrt[a^2 + b^2] (* A007805 *)
(* Peter J. C. Moses, Sep 02 2011 *)
PROG
(PARI) Vec(8*x/((x+1)*(x^2-18*x+1)) + O(x^50)) \\ Colin Barker, Jun 04 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 22 2011
STATUS
approved