login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291660
a(n) = 2*a(n-1) - a(n-2) + a(n-4) for n>3, a(0)=2, a(1)=3, a(2)=5, a(3)=7, a sequence related to Lucas numbers.
2
2, 3, 5, 7, 11, 18, 30, 49, 79, 127, 205, 332, 538, 871, 1409, 2279, 3687, 5966, 9654, 15621, 25275, 40895, 66169, 107064, 173234, 280299, 453533, 733831, 1187363, 1921194, 3108558, 5029753, 8138311, 13168063, 21306373, 34474436, 55780810, 90255247, 146036057, 236291303
OFFSET
0,1
COMMENTS
The array of successive differences begins:
2, 3, 5, 7, 11, 18, 30, 49, 79, 127, ... = a(n)
1, 2, 2, 4, 7, 12, 19, 30, 48, 78, ... = b(n)
1, 0, 2, 3, 5, 7, 11, 18, 30, 49, ... = a(n-2)
-1, 2, 1, 2, 2, 4, 7, 12, 19, 30, ... = b(n-2)
3, -1, 1, 0, 2, 3, 5, 7, 11, 18, ... = a(n-4)
...
Main diagonal is 2,2,2,... = A007395.
Adding a(n) and first column with alternating signs, one gets two autosequences: 2*Lucas numbers A000032 (2, 1, 3, 4, 7, 11, 18, ...) or 2*A286350 (0, 2, 2, 3, 4, 7, 12, ...) according to signs.
FORMULA
G.f.: (2 - x + x^2)/(1 - 2*x + x^2 - x^4).
a(3n) = A097924(n).
a(3n) + a(3n+1) = a(3n+2).
a(n) = (1/15)*2^(-n-1)*((30-9*sqrt(5))*(1-sqrt(5))^n + (1+sqrt(5))^n*(30 + 9*sqrt(5)) + 5*2^(n+1)*sqrt(3)*sin(n*Pi/3)).
MATHEMATICA
LinearRecurrence[{2, -1, 0, 1}, {2, 3, 5, 7}, 40]
PROG
(GAP)
L:=[2, 3, 5, 7];; for i in [5..10^3] do L[i]:=2*L[i-1]-L[i-2]+L[i-4]; od; L; # Muniru A Asiru, Sep 02 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved