login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291659
Numbers k such that (107*10^k + 13)/3 is prime.
0
2, 3, 6, 7, 47, 50, 57, 59, 110, 353, 812, 837, 843, 871, 939, 1385, 2192, 4257, 4892, 5011, 8507, 10597, 11862, 29579, 39198
OFFSET
1,1
COMMENTS
For k > 2, the numbers with the digits 35 followed by k-2 occurrences of the digit 6 followed by the digits 71 is prime.
The next term a(24) > 20000. - Robert G. Wilson v, Sep 06 2017
a(26) > 10^5. - Robert Price, Nov 05 2017
EXAMPLE
2 is in the sequence because (107*10^2 + 13)/3 = 3571; that is a prime.
6 is in the sequence because (107*10^6 + 13)/3 = 35666671; that is a prime.
a(1) = 2, 3571;
a(2) = 3, 35671;
a(3) = 6, 35666671;
a(4) = 7, 356666671;
a(5) = 47, 3566666666666666666666666666666666666666666666671;
a(6) = 50, 3566666666666666666666666666666666666666666666666671;
MAPLE
select(k -> isprime((107*10^k + 13)/3), [seq(k, k=1..7000)]);
MATHEMATICA
Select[Range[0, 5000], PrimeQ[(107*10^# + 13)/3] &]
PROG
(Magma) [k : k in [0..3000] | IsPrime((107*10^k+13) div 3)];
(PARI) for(n=0, 8e3, if(ispseudoprime((107*10^n+13) \ 3), print1(n, ", ")));
KEYWORD
nonn,more
AUTHOR
K. D. Bajpai, Aug 31 2017
EXTENSIONS
a(24)-a(25) from Robert Price, Nov 05 2017
STATUS
approved