login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*a(n-1) - a(n-2) + a(n-4) for n>3, a(0)=2, a(1)=3, a(2)=5, a(3)=7, a sequence related to Lucas numbers.
2

%I #29 Dec 01 2019 15:25:11

%S 2,3,5,7,11,18,30,49,79,127,205,332,538,871,1409,2279,3687,5966,9654,

%T 15621,25275,40895,66169,107064,173234,280299,453533,733831,1187363,

%U 1921194,3108558,5029753,8138311,13168063,21306373,34474436,55780810,90255247,146036057,236291303

%N a(n) = 2*a(n-1) - a(n-2) + a(n-4) for n>3, a(0)=2, a(1)=3, a(2)=5, a(3)=7, a sequence related to Lucas numbers.

%C The array of successive differences begins:

%C 2, 3, 5, 7, 11, 18, 30, 49, 79, 127, ... = a(n)

%C 1, 2, 2, 4, 7, 12, 19, 30, 48, 78, ... = b(n)

%C 1, 0, 2, 3, 5, 7, 11, 18, 30, 49, ... = a(n-2)

%C -1, 2, 1, 2, 2, 4, 7, 12, 19, 30, ... = b(n-2)

%C 3, -1, 1, 0, 2, 3, 5, 7, 11, 18, ... = a(n-4)

%C ...

%C Main diagonal is 2,2,2,... = A007395.

%C Adding a(n) and first column with alternating signs, one gets two autosequences: 2*Lucas numbers A000032 (2, 1, 3, 4, 7, 11, 18, ...) or 2*A286350 (0, 2, 2, 3, 4, 7, 12, ...) according to signs.

%H OEIS Wiki, <a href="https://oeis.org/wiki/Autosequence">Autosequence</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2, -1, 0, 1).

%F G.f.: (2 - x + x^2)/(1 - 2*x + x^2 - x^4).

%F a(3n) = A097924(n).

%F a(3n) + a(3n+1) = a(3n+2).

%F a(n) = (1/15)*2^(-n-1)*((30-9*sqrt(5))*(1-sqrt(5))^n + (1+sqrt(5))^n*(30 + 9*sqrt(5)) + 5*2^(n+1)*sqrt(3)*sin(n*Pi/3)).

%t LinearRecurrence[{2, -1, 0, 1}, {2, 3, 5, 7}, 40]

%o (GAP)

%o L:=[2,3,5,7];; for i in [5..10^3] do L[i]:=2*L[i-1]-L[i-2]+L[i-4]; od; L; # _Muniru A Asiru_, Sep 02 2017

%Y Cf. A000032, A097924, A286350.

%K nonn

%O 0,1

%A _Jean-François Alcover_ and _Paul Curtz_, Aug 31 2017