login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069749
Number of primes less than 10^n containing only the digits 2 and 3 (A020458).
0
2, 3, 5, 7, 11, 18, 31, 44, 83, 135, 239, 436, 818, 1436, 2773, 4695, 9244, 17022, 32948, 58158, 116040, 214188, 423902, 791950, 1554834, 2904470, 5725780, 10536383, 21070698, 40748211, 79634658, 148530950, 296094802, 561919901
OFFSET
1,1
COMMENTS
a(22) / A006880(22) = 214188 / 201467286689315906290 =~ 10^-15. But out of the 2^22 candidates for primes, ~5% are.
MATHEMATICA
s = 0; Do[k = 0; While[k < 2^n, k++; If[p = FromDigits[ PadLeft[ IntegerDigits[k, 2], n] + 2]; PrimeQ[p], s++ ]]; Print[s], {n, 1, 22}]
With[{c=Select[Flatten[Table[FromDigits/@Tuples[{2, 3}, n], {n, 22}]], PrimeQ]}, Table[Count[c, _?(#<10^i&)], {i, 22}]] (* Harvey P. Dale, Mar 18 2016 *)
PROG
(Python)
from sympy import isprime
from itertools import count, islice, product
def agen(): # generator of terms
c = 2
for d in count(2):
yield c
for first in product("23", repeat=d-1):
t = int("".join(first) + "3")
if isprime(t): c += 1
print(list(islice(agen(), 20))) # Michael S. Branicky, May 23 2024
CROSSREFS
KEYWORD
base,nonn,more
AUTHOR
Robert G. Wilson v, Apr 22 2002
EXTENSIONS
a(23)-a(27) from Sean A. Irvine, May 17 2024
a(28)-a(34) from Michael S. Branicky, May 22 2024
STATUS
approved