

A291601


Composite integers n such that 2^d == 2^(n/d) (mod n) for all dn.


3



341, 1105, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 13981, 14491, 15709, 18721, 19951, 23377, 31417, 31609, 31621, 35333, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 68101, 80581, 83333, 85489, 88357, 90751, 104653, 123251, 129889
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Such n must be odd.
For d=1, we have 2^n == 2 (mod n), implying that n is a Fermat pseudoprime (A001567).
Every SuperPoulet number belongs to this sequence.


LINKS

Robert Israel, Table of n, a(n) for n = 1..1000


MAPLE

filter:= proc(n) local D, d;
if isprime(n) then return false fi;
D:= sort(convert(numtheory:divisors(n), list));
for d in D while d^2 < n do
if 2 &^ d  2 &^(n/d) mod n <> 0 then return false fi
od:
true
end proc:
select(filter, [seq(i, i=3..2*10^5, 2)]); # Robert Israel, Aug 28 2017


CROSSREFS

Subsequence of A001567.
Supersequence of A050217, their set difference is given by A291602.
Sequence in context: A087835 A271221 A066488 * A083876 A068216 A038473
Adjacent sequences: A291598 A291599 A291600 * A291602 A291603 A291604


KEYWORD

nonn


AUTHOR

Max Alekseyev, Aug 27 2017


STATUS

approved



