%I
%S 341,1105,1387,2047,2701,3277,4033,4369,4681,5461,7957,8321,10261,
%T 13747,13981,14491,15709,18721,19951,23377,31417,31609,31621,35333,
%U 42799,49141,49981,60701,60787,65077,65281,68101,80581,83333,85489,88357,90751,104653,123251,129889
%N Composite integers n such that 2^d == 2^(n/d) (mod n) for all dn.
%C Such n must be odd.
%C For d=1, we have 2^n == 2 (mod n), implying that n is a Fermat pseudoprime (A001567).
%C Every SuperPoulet number belongs to this sequence.
%H Robert Israel, <a href="/A291601/b291601.txt">Table of n, a(n) for n = 1..1000</a>
%p filter:= proc(n) local D,d;
%p if isprime(n) then return false fi;
%p D:= sort(convert(numtheory:divisors(n),list));
%p for d in D while d^2 < n do
%p if 2 &^ d  2 &^(n/d) mod n <> 0 then return false fi
%p od:
%p true
%p end proc:
%p select(filter, [seq(i,i=3..2*10^5,2)]); # _Robert Israel_, Aug 28 2017
%Y Subsequence of A001567.
%Y Supersequence of A050217, their set difference is given by A291602.
%K nonn
%O 1,1
%A _Max Alekseyev_, Aug 27 2017
