login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367319
Base-2 Fermat pseudoprimes k such that (k-1)/ord(2, k) > (m-1)/ord(2, m) for all base-2 Fermat pseudoprimes m < k, where ord(2, k) is the multiplicative order of 2 modulo k.
2
341, 1105, 1387, 2047, 4369, 4681, 5461, 13981, 15709, 35333, 42799, 60787, 126217, 158369, 215265, 256999, 266305, 486737, 617093, 1082401, 1398101, 2113665, 2304167, 4025905, 4188889, 4670029, 6236473, 6242685, 8388607, 13757653, 16843009, 17895697, 22369621
OFFSET
1,1
MATHEMATICA
pspQ[n_] := CompositeQ[n] && PowerMod[2, n - 1, n] == 1; seq[kmax_] := Module[{s = {}, r, rm = 0}, Do[If[pspQ[k], r = (k - 1)/MultiplicativeOrder[2, k]; If[r > rm, rm = r; AppendTo[s, k]]], {k, 1, kmax}]; s]; seq[10^6]
PROG
(PARI) ispsp(n) = n > 1 && n % 2 && Mod(2, n)^(n-1) == 1 && !isprime(n);
lista(kmax) = {my(r, rm = 0); for(k = 1, kmax, if(ispsp(k), r = (k-1)/znorder(Mod(2, k)); if(r > rm, rm = r; print1(k, ", ")))); }
CROSSREFS
Subsequence of A001567.
Sequence in context: A271221 A066488 A291601 * A083876 A348258 A068216
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 14 2023
STATUS
approved