login
A367317
Expansion of (1/x) * Series_Reversion( x * (1-x-x^4/(1-x)) ).
3
1, 1, 2, 5, 15, 50, 177, 649, 2436, 9307, 36080, 141610, 561732, 2248709, 9073415, 36863549, 150676275, 619169360, 2556446520, 10600160707, 44121921044, 184291848864, 772204252280, 3244999395406, 13672564904027, 57749354647408, 244469827514066
OFFSET
0,3
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(2*n-2*k,n-4*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^4/(1-x)))/x)
(PARI) a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(2*n-2*k, n-4*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 26 2024
STATUS
approved