login
A290993
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^6.
3
0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 252, 463, 804, 1365, 2366, 4368, 8736, 18565, 40410, 87381, 184604, 379050, 758100, 1486675, 2884776, 5592405, 10919090, 21572460, 43144920, 87087001, 176565486, 357913941, 723002336, 1453179126, 2906358252, 5791193143
OFFSET
0,7
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.
FORMULA
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) for n>5. Corrected by Colin Barker, Aug 24 2017
G.f.: x^5 / ((1 - 2*x)*(1 - x + x^2)*(1 - 3*x + 3*x^2)). - Colin Barker, Aug 24 2017
a(n) = A192080(n-5) for n > 5. - Georg Fischer, Oct 23 2018
G.f.: x^5/((1-x)^6 - x^6). - G. C. Greubel, Apr 11 2023
MAPLE
seq(coeff(series(x^5/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)), x, n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 23 2018
MATHEMATICA
z = 60; s = x/(1 - x); p = 1 - s^6;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290993 *)
PROG
(PARI) concat(vector(5), Vec(x^5 / ((1 - 2*x)*(1 - x + x^2)*(1 - 3*x + 3*x^2)) + O(x^50))) \\ Colin Barker, Aug 24 2017
(GAP) a:=[0, 0, 0, 0, 1];; for n in [6..35] do a[n]:=6*a[n-1]-15*a[n-2]+20*a[n-3]-15*a[n-4]+6*a[n-5]; od; Concatenation([0], a); # Muniru A Asiru, Oct 23 2018
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); [0, 0, 0, 0, 0] cat Coefficients(R!( x^5/((1-x)^6 - x^6) )); // G. C. Greubel, Apr 11 2023
(SageMath)
def A290993_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^5/((1-x)^6 - x^6) ).list()
A290993_list(60) # G. C. Greubel, Apr 11 2023
CROSSREFS
Sequences of the form x^(m-1)/((1-x)^m - x^m): A000079 (m=1), A131577 (m=2), A024495 (m=3), A000749 (m=4), A139761 (m=5), this sequence (m=6), A290994 (m=7), A290995 (m=8).
Sequence in context: A264926 A006090 A192080 * A373937 A275936 A375165
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 21 2017
STATUS
approved