OFFSET
0,7
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6).
FORMULA
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) for n>5. Corrected by Colin Barker, Aug 24 2017
G.f.: x^5 / ((1 - 2*x)*(1 - x + x^2)*(1 - 3*x + 3*x^2)). - Colin Barker, Aug 24 2017
a(n) = A192080(n-5) for n > 5. - Georg Fischer, Oct 23 2018
G.f.: x^5/((1-x)^6 - x^6). - G. C. Greubel, Apr 11 2023
MAPLE
seq(coeff(series(x^5/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)), x, n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 23 2018
MATHEMATICA
PROG
(PARI) concat(vector(5), Vec(x^5 / ((1 - 2*x)*(1 - x + x^2)*(1 - 3*x + 3*x^2)) + O(x^50))) \\ Colin Barker, Aug 24 2017
(GAP) a:=[0, 0, 0, 0, 1];; for n in [6..35] do a[n]:=6*a[n-1]-15*a[n-2]+20*a[n-3]-15*a[n-4]+6*a[n-5]; od; Concatenation([0], a); # Muniru A Asiru, Oct 23 2018
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); [0, 0, 0, 0, 0] cat Coefficients(R!( x^5/((1-x)^6 - x^6) )); // G. C. Greubel, Apr 11 2023
(SageMath)
def A290993_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^5/((1-x)^6 - x^6) ).list()
A290993_list(60) # G. C. Greubel, Apr 11 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 21 2017
STATUS
approved