login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290973
Write 2*x/(1-x) in the form Sum_{j>=1} ((1-x^j)^a(j) - 1).
5
-2, 1, 2, 3, 4, 6, 6, 10, 8, 15, 10, 25, 12, 28, 10, 60, 16, 25, 18, 125, 0, 66, 22, 218, 24, 91, -30, 420, 28, -387, 30, 2011, -88, 153, 28, -1894, 36, 190, -182, 8902, 40, -3234, 42, 2398, -132, 276, 46, 2340, 48, -2678, -510, 4641, 52, -1754, -198, 108400
OFFSET
1,1
FORMULA
For all n > 0 we have: 2 = Sum_{d|n} binomial(-a(d) + n/d - 1, n/d).
EXAMPLE
2x/(1-x) = (1-x)^(-2) - 1 + (1-x^2)^1 - 1 + (1-x^3)^2 - 1 + (1-x^4)^3 - 1 + ...
MAPLE
a:= n-> add(binomial(n/d-1-a(d), n/d), d=
numtheory[divisors](n) minus {n})-2:
seq(a(n), n=1..60); # Alois P. Heinz, Aug 27 2017
MATHEMATICA
nn=60;
rus=SolveAlways[Normal[Series[2x/(1-x)==Sum[(1-x^n)^a[n]-1, {n, nn}], {x, 0, nn}]], x];
Array[a, nn]/.First[rus]
KEYWORD
sign
AUTHOR
Gus Wiseman, Aug 16 2017
STATUS
approved