The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290973 Write 2*x/(1-x) in the form Sum_{j>=1} ((1-x^j)^a(j) - 1). 5
-2, 1, 2, 3, 4, 6, 6, 10, 8, 15, 10, 25, 12, 28, 10, 60, 16, 25, 18, 125, 0, 66, 22, 218, 24, 91, -30, 420, 28, -387, 30, 2011, -88, 153, 28, -1894, 36, 190, -182, 8902, 40, -3234, 42, 2398, -132, 276, 46, 2340, 48, -2678, -510, 4641, 52, -1754, -198, 108400 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
FORMULA
For all n > 0 we have: 2 = Sum_{d|n} binomial(-a(d) + n/d - 1, n/d).
EXAMPLE
2x/(1-x) = (1-x)^(-2) - 1 + (1-x^2)^1 - 1 + (1-x^3)^2 - 1 + (1-x^4)^3 - 1 + ...
MAPLE
a:= n-> add(binomial(n/d-1-a(d), n/d), d=
numtheory[divisors](n) minus {n})-2:
seq(a(n), n=1..60); # Alois P. Heinz, Aug 27 2017
MATHEMATICA
nn=60;
rus=SolveAlways[Normal[Series[2x/(1-x)==Sum[(1-x^n)^a[n]-1, {n, nn}], {x, 0, nn}]], x];
Array[a, nn]/.First[rus]
CROSSREFS
Sequence in context: A050040 A277282 A191973 * A173497 A022875 A350404
KEYWORD
sign
AUTHOR
Gus Wiseman, Aug 16 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 14:17 EDT 2024. Contains 372788 sequences. (Running on oeis4.)