The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290973 Write 2*x/(1-x) in the form Sum_{j>=1} ((1-x^j)^a(j) - 1). 5
 -2, 1, 2, 3, 4, 6, 6, 10, 8, 15, 10, 25, 12, 28, 10, 60, 16, 25, 18, 125, 0, 66, 22, 218, 24, 91, -30, 420, 28, -387, 30, 2011, -88, 153, 28, -1894, 36, 190, -182, 8902, 40, -3234, 42, 2398, -132, 276, 46, 2340, 48, -2678, -510, 4641, 52, -1754, -198, 108400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Table of n, a(n) for n=1..56. FORMULA For all n > 0 we have: 2 = Sum_{d|n} binomial(-a(d) + n/d - 1, n/d). EXAMPLE 2x/(1-x) = (1-x)^(-2) - 1 + (1-x^2)^1 - 1 + (1-x^3)^2 - 1 + (1-x^4)^3 - 1 + ... MAPLE a:= n-> add(binomial(n/d-1-a(d), n/d), d= numtheory[divisors](n) minus {n})-2: seq(a(n), n=1..60); # Alois P. Heinz, Aug 27 2017 MATHEMATICA nn=60; rus=SolveAlways[Normal[Series[2x/(1-x)==Sum[(1-x^n)^a[n]-1, {n, nn}], {x, 0, nn}]], x]; Array[a, nn]/.First[rus] CROSSREFS Cf. A048272, A220418, A260685, A281145, A289078, A289501, A290261, A290971. Sequence in context: A050040 A277282 A191973 * A173497 A022875 A350404 Adjacent sequences: A290970 A290971 A290972 * A290974 A290975 A290976 KEYWORD sign AUTHOR Gus Wiseman, Aug 16 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 14:17 EDT 2024. Contains 372788 sequences. (Running on oeis4.)