login
A290973
Write 2*x/(1-x) in the form Sum_{j>=1} ((1-x^j)^a(j) - 1).
5
-2, 1, 2, 3, 4, 6, 6, 10, 8, 15, 10, 25, 12, 28, 10, 60, 16, 25, 18, 125, 0, 66, 22, 218, 24, 91, -30, 420, 28, -387, 30, 2011, -88, 153, 28, -1894, 36, 190, -182, 8902, 40, -3234, 42, 2398, -132, 276, 46, 2340, 48, -2678, -510, 4641, 52, -1754, -198, 108400
OFFSET
1,1
FORMULA
For all n > 0 we have: 2 = Sum_{d|n} binomial(-a(d) + n/d - 1, n/d).
EXAMPLE
2x/(1-x) = (1-x)^(-2) - 1 + (1-x^2)^1 - 1 + (1-x^3)^2 - 1 + (1-x^4)^3 - 1 + ...
MAPLE
a:= n-> add(binomial(n/d-1-a(d), n/d), d=
numtheory[divisors](n) minus {n})-2:
seq(a(n), n=1..60); # Alois P. Heinz, Aug 27 2017
MATHEMATICA
nn=60;
rus=SolveAlways[Normal[Series[2x/(1-x)==Sum[(1-x^n)^a[n]-1, {n, nn}], {x, 0, nn}]], x];
Array[a, nn]/.First[rus]
KEYWORD
sign
AUTHOR
Gus Wiseman, Aug 16 2017
STATUS
approved