login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290974
Alternating sum of row 2n of A022166.
0
1, -1, 7, -217, 27559, -14082649, 28827182503, -236123451882073, 7737057147819885991, -1014103817421900276726361, 531681448124675830384033629607, -1115016280616112042365706510363949657, 9353433376690281791373262192784600640357799
OFFSET
0,3
COMMENTS
The alternating row sums of A022166(n,k) is zero when n is odd.
LINKS
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
A. Nijenhuis, A. E. Solow, and H. S. Wilf, Bijective Methods in the Theory of Finite Vector Spaces, Journal of Combinatorial Theory, Series A 37,(1984), 80-84.
FORMULA
a(n) = Sum_{k=0..2n} (-1)^k A022166(2n,k).
a(0) = 1, a(n) = (1 - 2^(2n-1))*a(n-1).
a(n)/A005329(2n) is the coefficient of z^(2n) in the expansion of eq(-z)*eq(z) where eq(z) is the q-exponential function.
O.g.f.: Sum_{n>=0} a(n)*x^n = 1/(1 + (q-1)*x/(1 + q*(q^2-1)*x/(1 + q^2*(q^3-1)*x/(1 + q^3*(q^4-1)*x/(1 + q^4*(q^5-1)*x/(1 + q^5*(q^6-1)*x/(1 + ...))))))), a continued fraction, when evaluated at q = 2. - Paul D. Hanna, Aug 29 2020
O.g.f.: Sum_{n>=0} a(n)*x^(2*n) = Sum_{n>=0} (-x)^k / Product{k=0..n} (1 - 2^k*x). - Paul D. Hanna, Aug 29 2020
MATHEMATICA
nn = 26; eq[z_] :=Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}]; Select[Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}] CoefficientList[Series[eq[-z]*eq[z] /. q -> 2, {z, 0, nn}], z], # != 0 &]
a[n_Integer] := a[n] = 2 QPochhammer[1/2, 4, n + 1];
Table[a[n], {n, 0, 12}] (* Vladimir Reshetnikov, Sep 23 2021 *)
CROSSREFS
Sequence in context: A193224 A319538 A372946 * A145107 A231488 A231487
KEYWORD
sign
AUTHOR
Geoffrey Critzer, Aug 16 2017
STATUS
approved