OFFSET
1,2
COMMENTS
If n is odd, row n is {1, 2}.
If n is even, row n begins with {1, 2, 3, 4}.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..13988 (rows 1..1000 of triangle, flattened).
FORMULA
T(n,k) <= n^2, for n > 2 (see A319048).
EXAMPLE
Triangle begins:
n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
----------------------------------------------------------------------------------
1 | 1, 2;
2 | 1, 2, 3, 4, 6;
3 | 1, 2;
4 | 1, 2, 3, 4, 5, 6, 8, 10, 12;
5 | 1, 2;
6 | 1, 2, 3, 4, 6, 7, 9, 14, 18;
7 | 1, 2;
8 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30;
9 | 1, 2;
10 | 1, 2, 3, 4, 6, 11, 22;
11 | 1, 2;
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, 21, 26, 28, 36, 42;
13 | 1, 2;
14 | 1, 2, 3, 4, 6;
15 | 1, 2;
16 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 60;
17 | 1, 2;
18 | 1, 2, 3, 4, 6, 7, 9, 14, 18, 19, 27, 38, 54;
19 | 1, 2;
20 | 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 22, 25, 33, 44, 50, 66;
...
MATHEMATICA
With[{nmax = 25}, Table[If[OddQ[n], {1, 2}, PositionIndex[Divisible[n, #[[;; Max[n^2, 6]]]]][True]], {n, nmax}] & [EulerPhi[Range[nmax^2]]]]
PROG
(PARI) row(n) = select(x->!(n % eulerphi(x)), [1..max(n^2, 6)]); \\ Michel Marcus, Dec 05 2024
CROSSREFS
KEYWORD
nonn,tabf,new
AUTHOR
Paolo Xausa, Dec 03 2024
STATUS
approved