login
A290502
Hypotenuses for which there exist exactly 14 distinct integer triangles.
24
6103515625, 12207031250, 18310546875, 24414062500, 36621093750, 42724609375, 48828125000, 54931640625, 67138671875, 73242187500, 85449218750, 97656250000, 109863281250, 115966796875, 128173828125, 134277343750, 140380859375, 146484375000, 164794921875
OFFSET
1,1
COMMENTS
Numbers whose square is decomposable in 14 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity fourteen.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Hamdi Sahloul)
FORMULA
Terms are obtained by the product A004144(k)*A002144(p)^14 for k, p > 0 ordered by increasing values.
EXAMPLE
a(1) = 6103515625 = 5^14, a(5) = 36621093750 = 2*3*5^14, a(101) = 1171875000000 = 2^6*3*5^14.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[1171875000000], Length[r[#]] == 14 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Sequence in context: A234378 A046894 A145552 * A172663 A210727 A004675
KEYWORD
nonn
AUTHOR
Hamdi Sahloul, Aug 04 2017
STATUS
approved