OFFSET
1,1
COMMENTS
Comment from R. J. Mathar, Feb 26 2008, edited by Zak Seidov May 12 2008: (Start)
There are nonsquares x which can be written as a sum of 2 nonzero squares in exactly 7 different ways and which are by definition not in this sequence.
203125 = (125*sqrt(13))^2 is the first example: 203125 = 625 + 202500 = 10404 + 192721 = 18225 + 184900= 22500 + 180625= 62500 + 140625= 69169 + 133956= 84100 + 119025.
The second and third examples are 265625 = (125*sqrt(17))^2 and 406250=(125*sqrt(26))^2. (End)
If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000
FORMULA
Equals {n: A025426(n^2)=7}.
EXAMPLE
Example supplied by R. J. Mathar, Feb 26 2008:
The smallest number that can be written as a sum of two nonzero squares in 7 different ways is 105625 = 325^2:
1296 + 104329 = 105625 = 325^2
6400 + 99225 = 105625 = 325^2
8281 + 97344 = 105625 = 325^2
15625 + 90000 = 105625 = 325^2
27225 + 78400 = 105625 = 325^2
38025 + 67600 = 105625 = 325^2
41616 + 64009 = 105625 = 325^2.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[3000], Length[r[#]] == 7 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
KEYWORD
nonn
AUTHOR
James R. Buddenhagen, Sep 15 2004
EXTENSIONS
Definition and comments corrected by Zak Seidov, Feb 26 2008, May 12 2008
STATUS
approved