login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290247
Number of compositions (ordered partitions) of n^3 into cubes.
8
1, 1, 2, 120, 290250, 107320441096, 21715974961480054078, 8487986089807555456140271121440, 22615863021403796876556069287242400147213424924, 1449638083412288206280215383952017948209203861522683138464747658192
OFFSET
0,3
FORMULA
a(n) = [x^(n^3)] 1/(1 - Sum_{k>=1} x^(k^3)).
a(n) = A023358(A000578(n)).
EXAMPLE
a(2) = 2 because 2^3 = 8 and we have [8], [1, 1, 1, 1, 1, 1, 1, 1].
MAPLE
b:= proc(n) option remember; local i; if n=0 then 1
else 0; for i while i^3<=n do %+b(n-i^3) od fi
end:
a:= n-> b(n^3):
seq(a(n), n=0..10); # Alois P. Heinz, Aug 12 2017
MATHEMATICA
Table[SeriesCoefficient[1/(1 - Sum[x^k^3, {k, 1, n}]), {x, 0, n^3}], {n, 0, 9}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 24 2017
STATUS
approved