login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181760
a(n) = (n!)(n!-1)(n!-2)...(n!-n+1).
0
1, 1, 2, 120, 255024, 22869362880, 136434451994755200, 82262786502445667337542400, 6980114960816118346901632738195814400, 109099864394915605737486658299863377337267988480000, 395935956167605557454071116707328675502625329271836386079338496000
OFFSET
0,3
COMMENTS
a(n) is the number of n X n matrices such that each row of the matrix is a different permutation of {1,2,...n}.
FORMULA
a(n) ~ (2*Pi)^(n/2) * n^(n*(2*n+1)/2) / exp(n^2-1/12). - Vaclav Kotesovec, Oct 26 2017
MAPLE
a:= n-> mul(n!-k, k=0..n-1):
seq(a(n), n=0..10); # Alois P. Heinz, Jan 17 2011
MATHEMATICA
Table[FactorialPower[n!, n], {n, 0, 10}]
CROSSREFS
Cf. A036740.
Sequence in context: A331500 A024343 A100043 * A290247 A100012 A337989
KEYWORD
nonn
STATUS
approved