login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n!)(n!-1)(n!-2)...(n!-n+1).
0

%I #15 Oct 26 2017 15:16:14

%S 1,1,2,120,255024,22869362880,136434451994755200,

%T 82262786502445667337542400,6980114960816118346901632738195814400,

%U 109099864394915605737486658299863377337267988480000,395935956167605557454071116707328675502625329271836386079338496000

%N a(n) = (n!)(n!-1)(n!-2)...(n!-n+1).

%C a(n) is the number of n X n matrices such that each row of the matrix is a different permutation of {1,2,...n}.

%F a(n) ~ (2*Pi)^(n/2) * n^(n*(2*n+1)/2) / exp(n^2-1/12). - _Vaclav Kotesovec_, Oct 26 2017

%p a:= n-> mul(n!-k, k=0..n-1):

%p seq(a(n), n=0..10); # _Alois P. Heinz_, Jan 17 2011

%t Table[FactorialPower[n!,n],{n,0,10}]

%Y Cf. A036740.

%K nonn

%O 0,3

%A _Geoffrey Critzer_