login
A024343
Expansion of e.g.f. sin(x^2) in powers of x^(4*n + 2).
3
2, -120, 30240, -17297280, 17643225600, -28158588057600, 64764752532480000, -202843204931727360000, 830034394580628357120000, -4299578163927654889881600000, 27500101936481280675682713600000
OFFSET
0,1
COMMENTS
Absolute values are coefficients of expansion of sinh(x^2).
LINKS
FORMULA
a(n) = (-1)^n * (4*n+2)! / (2*n+1)!.
E.g.f.: [x^(4*n+2)] sin(x^2)
a(n) = 2 * A009564(n). - Sean A. Irvine, Jul 01 2019
MATHEMATICA
Table[(-1)^n*(2*n+1)!*Binomial[4*n+2, 2*n+1], {n, 0, 30}] (* G. C. Greubel, Jan 29 2022 *)
PROG
(PARI) a(n)=polcoeff(serlaplace(sin(x^2)), 4*n+2)
(PARI) a(n)=(-1)^n*(4*n+2)!/(2*n+1)!
(Sage) f=factorial; [(-1)^n*f(4*n+2)/f(2*n+1) for n in (0..30)] # G. C. Greubel, Jan 29 2022
(Magma) F:=Factorial;; [(-1)^n*F(4*n+2)/F(2*n+1) : n in [0..30]]; // G. C. Greubel, Jan 29 2022
CROSSREFS
Bisection of A001813.
Cf. A009564.
Sequence in context: A272180 A187880 A331500 * A100043 A181760 A290247
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
Edited by Ralf Stephan, Mar 25 2004
Name edited by Michel Marcus, Jul 01 2019
STATUS
approved