Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Aug 12 2017 09:30:40
%S 1,1,2,120,290250,107320441096,21715974961480054078,
%T 8487986089807555456140271121440,
%U 22615863021403796876556069287242400147213424924,1449638083412288206280215383952017948209203861522683138464747658192
%N Number of compositions (ordered partitions) of n^3 into cubes.
%H Alois P. Heinz, <a href="/A290247/b290247.txt">Table of n, a(n) for n = 0..22</a>
%H <a href="/index/Com#comp">Index entries for sequences related to compositions</a>
%F a(n) = [x^(n^3)] 1/(1 - Sum_{k>=1} x^(k^3)).
%F a(n) = A023358(A000578(n)).
%e a(2) = 2 because 2^3 = 8 and we have [8], [1, 1, 1, 1, 1, 1, 1, 1].
%p b:= proc(n) option remember; local i; if n=0 then 1
%p else 0; for i while i^3<=n do %+b(n-i^3) od fi
%p end:
%p a:= n-> b(n^3):
%p seq(a(n), n=0..10); # _Alois P. Heinz_, Aug 12 2017
%t Table[SeriesCoefficient[1/(1 - Sum[x^k^3, {k, 1, n}]), {x, 0, n^3}], {n, 0, 9}]
%Y Cf. A000578, A023358, A030272, A224366, A259792.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Jul 24 2017