|
|
A290159
|
|
Numerators of coefficients in Taylor series expansion of (1+x+x^2)^(1/2).
|
|
0
|
|
|
1, 1, 3, -3, 3, 15, -57, 21, 867, -1893, 1581, 8283, -76953, 34203, 361551, -869691, 6420387, 34130067, -167946159, 79445631, 1696170093, -4239570255, 4083041217, 21859150803, -442212416121, 215805655695, 2316081934929, -5909439428697, 11656013746863, 62663656767603, -322045194694305, 160129270032933, 27589357112530467
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Denominators of the Taylor series expansion are given by A046161.
The terms after the second are divisible by 3.
The sequence of the absolute values is not monotonic.
|
|
LINKS
|
|
|
MAPLE
|
a:= n-> numer(coeff(series(sqrt(1+x+x^2), x, n+3), x, n)):
|
|
MATHEMATICA
|
Numerator[CoefficientList[Series[Sqrt[1+x+x^2], {x, 0, 32}], x]]
|
|
PROG
|
(PARI) x = 'x + O('x^40); apply(x->numerator(x), Vec((1+x+x^2)^(1/2))) \\ Michel Marcus, Jul 24 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,frac
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|