login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290162 Initial primes of 8 consecutive primes with 7 consecutive gaps 14, 12, 10, 8, 6, 4, 2. 4
5647457, 18117977, 21705503, 32465063, 37091597, 57269633, 90217163, 109933673, 111053573, 124123133, 145594583, 146742863, 163123997, 200416343, 239659907, 245333267, 272213813, 335971367, 350795033, 470838833, 701465327, 749927357, 888801707, 1060690667 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
All terms = {17,23} mod 30.
For initial primes of 8 consecutive primes with consecutive gaps 2, 4, 6, 8, 10, 12, 14 see A190838.
LINKS
EXAMPLE
Prime(390215..390222) = {5647457, 5647471, 5647483, 5647493, 5647501, 5647507, 5647511, 5647513} and 5647457 + 14 = 5647471, 5647471 + 12 = 5647483, 5647483 + 10 = 5647493, 5647493 + 8 = 5647501, 5647501 + 6 = 5647507, 5647507 + 4 = 5647511, 5647511 + 2 = 5647513.
PROG
P:=Filtered([1..100000000], IsPrime);; I:=Reversed([2, 4, 6, 8, 10, 12, 14]);;
P1:=List([1..Length(P)-1], i->P[i+1]-P[i]);; Collected(last);;
P2:=List([1..Length(P)-Length(I)], i->[P1[i], P1[i+1], P1[i+2], P1[i+3], P1[i+4], P1[i+5], P1[i+6]]);;
P3:=List(Positions(P2, I), i->P[i]); Length(P3);
CROSSREFS
Sequence in context: A258536 A258529 A254921 * A251018 A254388 A254395
KEYWORD
nonn
AUTHOR
Muniru A Asiru, Jul 22 2017
EXTENSIONS
a(8)-a(24) from Giovanni Resta, Jul 25 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 21:52 EST 2024. Contains 370219 sequences. (Running on oeis4.)