login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110668
Sequence is {a(3,n)}, where a(m,n) is defined at sequence A110665.
6
0, 1, 3, 3, -3, -15, -27, -32, -30, -30, -42, -66, -90, -101, -99, -99, -117, -153, -189, -206, -204, -204, -228, -276, -324, -347, -345, -345, -375, -435, -495, -524, -522, -522, -558, -630, -702, -737, -735, -735, -777, -861, -945, -986, -984, -984, -1032, -1128, -1224, -1271, -1269, -1269, -1323, -1431
OFFSET
0,3
LINKS
FORMULA
Conjecture: g.f.: x*(-1+2*x) / ( (x^2-x+1)^2*(x-1)^3 ). - R. J. Mathar, Oct 09 2013
EXAMPLE
a(0,n): 0, 1, 0, -3, -4, ...
a(1,n): 0, 1, 1, -2, -6, ...
a(2,n): 0, 1, 2, 0, -6, ...
a(3,n): 0, 1, 3, 3, -3, ...
a(4,n): 0, 1, 4, 7, 4, ...
Main diagonal of array is 0, 1, 2, 3, 4, ...
MAPLE
A11066x := proc(mmax, nmax) local a, i, j ; a := array(0..mmax, 0..nmax) ; a[0, 0] := 0 ; for i from 1 to nmax do a[0, i] := i-sum(binomial(2*i-k-1, i-1)*a[0, k], k=0..i-1) : od ; for j from 1 to mmax do a[j, 0] := 0 ; for i from 1 to nmax do a[j, i] := a[j-1, i]+a[j, i-1] ; od ; od ; RETURN(a) ; end :
nmax := 100 : m := 3: a := A11066x(m, nmax) :
for n from 0 to nmax do printf("%d, ", a[m, n]) ; od ; # R. J. Mathar, Sep 01 2006
MATHEMATICA
a[m_, n_] := a[m, n] = Which[n == 0, 0, m == 0, n - Sum[ Binomial[2 n - k - 1, n - 1]*a[0, k], {k, 0, (n - 1)}], True, a[m - 1, n] + a[m, n - 1]]; Array[a[3, #] &, 54, 0] (* Michael De Vlieger, Sep 04 2017 *)
CROSSREFS
Sequence in context: A183554 A229847 A196529 * A367773 A176248 A290159
KEYWORD
easy,sign
AUTHOR
Leroy Quet, Aug 02 2005
EXTENSIONS
More terms from R. J. Mathar, Sep 01 2006
STATUS
approved