|
|
A356388
|
|
a(n) is the product of all parts in negaFibonacci representation of -n.
|
|
2
|
|
|
1, -1, -3, -3, 3, -16, -16, -8, -8, 8, 24, 24, -24, -210, -210, -105, -105, 105, -42, -42, -21, -21, 21, 63, 63, -63, 336, 336, 168, 168, -168, -504, -504, 504, -7150, -7150, -3575, -3575, 3575, -1430, -1430, -715, -715, 715, 2145, 2145, -2145, -550, -550
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(0) = 1 for the empty product.
|
|
LINKS
|
|
|
EXAMPLE
|
For n = 11:
- -11 = F(-4) + F(-6),
- so a(11) = F(-4) * F(-6) = -3 * -8 = 24.
|
|
PROG
|
(PARI) a(n) = { my (v=1); n=-n; while (n, my (neg=0, pos=0, f); for (e=0, oo, f=fibonacci(-1-e); if (f<0, neg+=f, pos+=f); if (neg <=n && n <= pos, v*=f; n-=f; break))); return (v) }
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|