login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289570
Coefficients in expansion of 1/E_6^(3/2).
4
1, 756, 501228, 311671584, 187266950892, 110121960638088, 63808586297102304, 36578013578688141504, 20797655630223547290348, 11749541312124028845092052, 6603568491137827506152966712, 3695593478842608407829235523808
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{n>=1} (1-q^n)^(-3*A288851(n)/2).
a(n) ~ c * exp(2*Pi*n) * sqrt(n), where c = 2^(17/2) * Gamma(3/4)^24 / (27 * Pi^(13/2)) = 1.0344943380746471723299237298670710161068814236907171661035... - Vaclav Kotesovec, Jul 09 2017, updated Mar 05 2018
MATHEMATICA
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}])^(-3/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
CROSSREFS
E_6^(k/12): this sequence (k=-18), A000706 (k=-12), A289567 (k=-6), A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), A289346 (k=8), A289347 (k=9), A289348 (k=10), A289349 (k=11).
Cf. A288851.
Sequence in context: A269106 A035853 A269286 * A269934 A269898 A291864
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 08 2017
STATUS
approved