|
|
A289568
|
|
Coefficients in expansion of 1/E_10^(1/2).
|
|
5
|
|
|
1, 132, 93852, 35163744, 18119136156, 8462089683432, 4234179302847648, 2096050696254014016, 1057219212439789539228, 534730176137991079392036, 272470142855167873443179352, 139363825115618499934478625696
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: Product_{n>=1} (1-q^n)^(-A289024(n)/2).
a(n) ~ c * exp(2*Pi*n) / sqrt(n), where c = 0.4542595790370690606664796229968194763901027924111318430568304678613... = 2^(7/2) * Gamma(3/4)^12 / (3^(3/2) * Pi^(7/2)). - Vaclav Kotesovec, Jul 09 2017, updated Mar 07 2018
|
|
MATHEMATICA
|
nmax = 20; CoefficientList[Series[(1 - 264*Sum[DivisorSigma[9, k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|