Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #17 Mar 07 2018 04:09:41
%S 1,132,93852,35163744,18119136156,8462089683432,4234179302847648,
%T 2096050696254014016,1057219212439789539228,534730176137991079392036,
%U 272470142855167873443179352,139363825115618499934478625696
%N Coefficients in expansion of 1/E_10^(1/2).
%H Seiichi Manyama, <a href="/A289568/b289568.txt">Table of n, a(n) for n = 0..367</a>
%F G.f.: Product_{n>=1} (1-q^n)^(-A289024(n)/2).
%F a(n) ~ c * exp(2*Pi*n) / sqrt(n), where c = 0.4542595790370690606664796229968194763901027924111318430568304678613... = 2^(7/2) * Gamma(3/4)^12 / (3^(3/2) * Pi^(7/2)). - _Vaclav Kotesovec_, Jul 09 2017, updated Mar 07 2018
%t nmax = 20; CoefficientList[Series[(1 - 264*Sum[DivisorSigma[9, k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 09 2017 *)
%Y 1/E_k^(1/2): A289565 (k=2), A289566 (k=4), A289567 (k=6), A001943 (k=8), this sequence (k=10), A289569 (k=14).
%Y Cf. A285836 (1/E_10), A289024, A289294 (E_10^(1/2)).
%K nonn
%O 0,2
%A _Seiichi Manyama_, Jul 08 2017