login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289298
Expansion of (q*j(q))^(1/8) where j(q) is the elliptic modular invariant (A000521).
18
1, 93, -5661, 741532, -113207799, 19015433748, -3390166183729, 629581913929419, -120437982238038210, 23564574046009042869, -4692899968498921291530, 948024211601180444075739, -193775768073341380441728322
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{n>=1} (1-q^n)^(A192731(n)/8).
a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(11/8), where c = 0.2541876595230750963327533839122695596555059904123327336821622582369... = 3^(11/8) * sqrt(2 + sqrt(2)) * Gamma(1/3)^(9/4) * Gamma(3/8) / (2^(35/8) * exp(sqrt(3) * Pi/8) * Pi^(5/2)). - Vaclav Kotesovec, Jul 03 2017, updated Mar 06 2018
a(n) * A299827(n) ~ -3*2^(1/4)*sqrt(1+sqrt(2)) * exp(2*sqrt(3)*Pi*n) / (16*Pi*n^2). - Vaclav Kotesovec, Feb 20 2018
MATHEMATICA
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(3/8) / (2*QPochhammer[-1, x])^3, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
(q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(1/8) + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
CROSSREFS
(q*j(q))^(k/24): A106205 (k=1), A289297 (k=2), this sequence (k=3), A289299 (k=4), A289300 (k=5), A289301 (k=6), A289302 (k=7), A007245 (k=8), A289303 (k=9), A289304 (k=10), A289305 (k=11), A161361 (k=12).
Sequence in context: A017809 A017756 A246991 * A093293 A263517 A299827
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 02 2017
STATUS
approved