login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (q*j(q))^(1/8) where j(q) is the elliptic modular invariant (A000521).
18

%I #24 Mar 06 2018 11:22:03

%S 1,93,-5661,741532,-113207799,19015433748,-3390166183729,

%T 629581913929419,-120437982238038210,23564574046009042869,

%U -4692899968498921291530,948024211601180444075739,-193775768073341380441728322

%N Expansion of (q*j(q))^(1/8) where j(q) is the elliptic modular invariant (A000521).

%H Seiichi Manyama, <a href="/A289298/b289298.txt">Table of n, a(n) for n = 0..424</a>

%F G.f.: Product_{n>=1} (1-q^n)^(A192731(n)/8).

%F a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(11/8), where c = 0.2541876595230750963327533839122695596555059904123327336821622582369... = 3^(11/8) * sqrt(2 + sqrt(2)) * Gamma(1/3)^(9/4) * Gamma(3/8) / (2^(35/8) * exp(sqrt(3) * Pi/8) * Pi^(5/2)). - _Vaclav Kotesovec_, Jul 03 2017, updated Mar 06 2018

%F a(n) * A299827(n) ~ -3*2^(1/4)*sqrt(1+sqrt(2)) * exp(2*sqrt(3)*Pi*n) / (16*Pi*n^2). - _Vaclav Kotesovec_, Feb 20 2018

%t CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(3/8) / (2*QPochhammer[-1, x])^3, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Sep 23 2017 *)

%t (q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(1/8) + O[q]^13 // CoefficientList[#, q]& (* _Jean-François Alcover_, Nov 02 2017 *)

%Y (q*j(q))^(k/24): A106205 (k=1), A289297 (k=2), this sequence (k=3), A289299 (k=4), A289300 (k=5), A289301 (k=6), A289302 (k=7), A007245 (k=8), A289303 (k=9), A289304 (k=10), A289305 (k=11), A161361 (k=12).

%Y Cf. A000521, A192731.

%K sign

%O 0,2

%A _Seiichi Manyama_, Jul 02 2017