|
|
A289297
|
|
Expansion of (q*j(q))^(1/12) where j(q) is the elliptic modular invariant (A000521).
|
|
18
|
|
|
1, 62, -4735, 651070, -103766140, 17999397756, -3292567703035, 624659270035130, -121698860487451255, 24194029851560118900, -4886913657541566648179, 999849040331683393909232, -206741394604073327046805355
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: Product_{n>=1} (1-q^n)^(A192731(n)/12).
a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(5/4), where c = 0.200236163401945306105645017761063156355568043417672219092096121424... = 3^(1/4) * Gamma(1/4) * Gamma(1/3)^(3/2) / (2^(11/4) * exp(Pi/(4 * sqrt(3))) * Pi^2). - Vaclav Kotesovec, Jul 03 2017, updated Mar 06 2018
|
|
MATHEMATICA
|
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(1/4) / (2*QPochhammer[-1, x])^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
(q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(1/12) + O[q]^13 //
|
|
CROSSREFS
|
(q*j(q))^(k/24): A106205 (k=1), this sequence (k=2), A289298 (k=3), A289299 (k=4), A289300 (k=5), A289301 (k=6), A289302 (k=7), A007245 (k=8), A289303 (k=9), A289304 (k=10), A289305 (k=11), A161361 (k=12).
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|