login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288727
Expansion of 1/j^2 where j is the elliptic modular invariant (A000521).
9
1, -1488, 1266840, -811420480, 434731407660, -205762405603104, 88869953694086720, -35768448018942261120, 13610297613250180785870, -4947238483283026511913200, 1731166476103096494953112096, -586625688530872572480200739648
OFFSET
2,2
LINKS
FORMULA
a(n) ~ (-1)^n * c * exp(Pi*sqrt(3)*n) * n^5, where c = 8 * Pi^24 / (5 * 3^7 * Gamma(1/3)^36) = 0.000000245024306665040229500554761856570608172017999096... - Vaclav Kotesovec, Jul 07 2017, updated Mar 05 2018
MATHEMATICA
nmax = 20; Drop[CoefficientList[Series[((1 - (1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}])^2/(1 + 240*Sum[DivisorSigma[3, k]*x^k, {k, 1, nmax}])^3)/1728)^2, {x, 0, nmax}], x], 2] (* Vaclav Kotesovec, Jul 07 2017 *)
a[n_] := SeriesCoefficient[1/(1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^2, {q, 0, n}]; Table[a[n], {n, 2, 13}] (* Jean-François Alcover, Nov 02 2017 *)
CROSSREFS
Cf. A000521 (j).
1/j^k: A066395 (k=1), this sequence (k=2), A289454 (k=3), A289455 (k=4).
Sequence in context: A257760 A237244 A028515 * A137705 A367769 A171617
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 06 2017
STATUS
approved