login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289455
Expansion of 1/j^4 where j is the elliptic modular invariant (A000521).
9
1, -2976, 4747824, -5392956800, 4889133749400, -3761165322168768, 2549962294786430144, -1562849905009064897280, 881746577453401952409900, -464149085470990004575901600, 230323243751761513144853469408, -108618796884881830752241855604352
OFFSET
4,2
LINKS
FORMULA
a(n) ~ (-1)^n * c * exp(Pi*sqrt(3)*n) * n^11, where c = 16 * Pi^48 / (82864937925 * Gamma(1/3)^72) = 0.00000000000000002165833724988588666420880993216216369751685... - Vaclav Kotesovec, Jul 07 2017, updated Mar 05 2018
MATHEMATICA
nmax = 20; Drop[CoefficientList[Series[((1 - (1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}])^2/(1 + 240*Sum[DivisorSigma[3, k]*x^k, {k, 1, nmax}])^3)/1728)^4, {x, 0, nmax}], x], 4] (* Vaclav Kotesovec, Jul 07 2017 *)
a[n_] := SeriesCoefficient[1/(1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^4, {q, 0, n}]; Table[a[n], {n, 4, 15}] (* Jean-François Alcover, Nov 02 2017 *)
CROSSREFS
Cf. A000521 (j).
1/j^k: A066395 (k=1), A288727 (k=2), A289454 (k=3), this sequence (k=4).
Sequence in context: A186549 A236140 A281330 * A360666 A202775 A235744
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 06 2017
STATUS
approved