The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A171617 a(n)=k is the smallest exponent of N=2^k of first prime(1)=2 where at least 5 equal decimal digits "n n n n n" appear in the decimal representation of N (n=0,1,...9). 1
 1491, 485, 314, 221, 315, 973, 220, 317, 316, 422 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS If we change the definition to allow for not just the digits but for the numbers, say "10" then this sequence can be extended. a(10) would become 263528 and a(11) would equal 165742. - Robert G. Wilson v, Oct 13 2012 REFERENCES E. J. Burr, American Mathematical Monthly (December 1963, 70(10), pp. 1101-2 Julian Havil, Impossible?: Surprising Solutions to Counterintuitive Conundrums, Princeton University Press 2008 Ross Honsberger, Ingenuity in mathematics, Random House/Singer School Division 1970 LINKS EXAMPLE 0: 2^1491: 449 decimal digits, "00000" appears on decimals 397 - 401. 1: 2^485: 146 decimal digits, "11111" appears on decimals 22 - 26. 2: 2^314: 95 decimal digits, "22222" appears on decimals 64 - 68. 3: 2^221: 67 decimal digits, "33333" appears on decimals 7 - 11. 4: 2^315: 95 decimal digits, "44444" appears on decimals 64 - 68. 5: 2^973: 293 decimal digits, "555555" (6 "5's") appears on decimals 230 - 25. 6: 2^220: 67 decimal digits, "66666" appears on decimals 7 - 11. 7: 2^317: 96 decimal digits, "77777" appears on decimals 65 - 69. 8: 2^316: 96 decimal digits, "88888" appears on decimals 65 - 69. 9: 2^422: 128 decimal digits, "99999" appears on decimals 83 - 87. MATHEMATICA f[n_] := Block[{k = 1, m = IntegerString[n]}, mm = m <> m <> m <> m <> m; While[ StringPosition[ ToString[2^k], mm] == {}, k++]; k]; Array[f, 10, 0] (* Robert G. Wilson v, Oct 13 2012 *) CROSSREFS Cf. A000079, A018802, A171132, A171242, A171489. Sequence in context: A028515 A288727 A137705 * A067841 A237968 A062912 Adjacent sequences:  A171614 A171615 A171616 * A171618 A171619 A171620 KEYWORD nonn,base,fini,full AUTHOR Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Dec 13 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 01:28 EDT 2022. Contains 357134 sequences. (Running on oeis4.)