login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137705
Prime numbers p such that p +- ((p-1)/4) are primes.
1
1489, 2377, 2689, 2857, 3361, 3889, 4969, 5569, 6481, 6577, 7537, 8089, 10009, 11257, 14281, 14449, 14929, 15601, 16057, 17569, 18121, 19249, 21817, 22441, 24169, 24697, 25057, 26881, 27481, 30937, 31081, 33289, 33409, 33529, 33961, 36097, 39841
OFFSET
1,1
LINKS
EXAMPLE
1489+1488/4 = 1861 and 1489-1488/4 = 1117, which are primes;
2377+2376/4 = 2971 and 2377-2376/4 = 1783, which are primes.
MATHEMATICA
w=4; s=""; For[i=1, i<10^3*2, p=Prime[i]; If[PrimeQ[p-((p-1)/w)]&&PrimeQ[p+((p-1)/w)], (*Print[p, ":", p-((p-1)/w), ", ", p+((p-1)/w)]; *)s=s<>ToString[p]<>", "]; i++ ]; Print[s]
Select[Prime[Range[50000]], PrimeQ[# + (# - 1) / 4]&& PrimeQ[# - (# - 1) / 4] &] (* Vincenzo Librandi, Jun 15 2013 *)
PROG
(Magma) [p: p in PrimesInInterval(5, 40000)| IsPrime((5*p-1) div 4 ) and IsPrime((3*p+1) div 4)]; // Vincenzo Librandi, Jun 15 2013
CROSSREFS
Sequence in context: A237244 A028515 A288727 * A367769 A171617 A067841
KEYWORD
nonn,easy
AUTHOR
STATUS
approved