login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288682
Number of Dyck paths of semilength n such that no positive level has fewer than six peaks.
2
1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 8, 156, 1213, 5232, 16091, 41834, 100320, 229851, 513699, 1166304, 3068322, 11294356, 54431307, 271824026, 1253186445, 5233138157, 20031588131, 71538367677, 242280234545, 789260222205, 2507719402158, 7900354628357
OFFSET
0,14
LINKS
MATHEMATICA
b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[k, i - j], i - 1}] b[n - j, k, i], {i, n - j}]]; a[n_]:=If[n==0, 1, Sum[b[n, 6, j], {j, 6, n}]]; Table[a[n], {n, 0, 35}] (* Indranil Ghosh, Aug 10 2017 *)
PROG
(Python)
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, k, j): return 1 if j==n else sum([sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(k, i - j), i)])*b(n - j, k, i) for i in range(1, n - j + 1)])
def a(n): return 1 if n==0 else sum([b(n, 6, j) for j in range(6, n + 1)])
print([a(n) for n in range(36)]) # Indranil Ghosh, Aug 10 2017
CROSSREFS
Column k=6 of A288386.
Cf. A000108.
Sequence in context: A302959 A188408 A089669 * A268543 A345317 A113668
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 13 2017
STATUS
approved