login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268543
The diagonal of 1/(1 - (y + z + x z + x w + x y w)).
1
1, 8, 156, 3800, 102340, 2919168, 86427264, 2626557648, 81380484900, 2559296511200, 81443222791216, 2616761264496288, 84749038859067856, 2763262653898544000, 90615128199047200800, 2986287891921565639200, 98841887070519004625700
OFFSET
0,2
COMMENTS
From Gheorghe Coserea, Jul 03 2016: (Start)
Also diagonal of rational function R(x,y,z) = 1/(1 - x - y - z - x*y).
Annihilating differential operator: x*(2*x+3)*(16*x^2-71*x+2)*Dx^2 + 2*(32*x^3+x^2-213*x+3)*Dx + 8*x^2+48*x-48.
(End)
LINKS
A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
S. Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
FORMULA
Conjecture: 2*n^2*(17*n-23)*a(n) +(-1207*n^3+2840*n^2-1897*n+360)*a(n-1) + 4*(17*n-6)*(-3+2*n)^2*a(n-2) = 0. - R. J. Mathar, Mar 11 2016
G.f.: hypergeom([1/12, 5/12], [1], 1728*x^3*(2-71*x+16*x^2)/(1-32*x+16*x^2)^3)*(1-32*x+16*x^2)^(-1/4). - Gheorghe Coserea, Jul 01 2016
0 = x*(2*x+3)*(16*x^2-71*x+2)*y'' + 2*(32*x^3+x^2-213*x+3)*y' + (8*x^2+48*x-48)*y, where y is the g.f. - Gheorghe Coserea, Jul 03 2016
a(n) ~ sqrt(3 + 13/sqrt(17)) * (71+17*sqrt(17))^n / (Pi * n * 2^(2*n + 3/2)). - Vaclav Kotesovec, Jul 05 2016
From Peter Bala, Jan 27 2018: (Start)
a(n) = binomial(2*n,n)*Sum_{k = 0..n} binomial(n,k)* binomial(2*n+k,k) (apply Eger, Theorem 3 to the set of column vectors S = {[1,0,0], [0,1,0], [0,0,1], [1,1,0]}). Using this binomial sum, Maple confirms the above recurrence of Mathar.
a(n) = A000984(n)*A114496(n). (End)
MAPLE
A268543 := proc(n)
1/(1-y-z-x*z-x*w-x*y*w) ;
coeftayl(%, x=0, n) ;
coeftayl(%, y=0, n) ;
coeftayl(%, z=0, n) ;
coeftayl(%, w=0, n) ;
end proc:
seq(A268543(n), n=0..40) ; # R. J. Mathar, Mar 11 2016
#alternative program
with(combinat):
seq(binomial(2*n, n)*add(binomial(n, k)*binomial(2*n+k, k), k = 0..n), n = 0..20); # Peter Bala, Jan 27 2018
MATHEMATICA
CoefficientList[Series[HypergeometricPFQ[{1/12, 5/12}, {1}, 1728*x^3*(2 - 71*x + 16*x^2)/(1 - 32*x + 16*x^2)^3]*(1 - 32*x + 16*x^2)^(-1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
PROG
(PARI)
my(x='x, y='y, z='z, w='w);
R = 1/(1 - x - y - z - x*y);
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(10, R, [x, y, z])
(PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
read("hypergeom.gpi");
N = 20; x = 'x + O('x^N);
Vec(hypergeom_sym([1/12, 5/12], [1], 1728*x^3*(16*x^2-71*x+2)/(16*x^2-32*x+1)^3, N)/(16*x^2-32*x+1)^(1/4)) \\ Gheorghe Coserea, Jul 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 29 2016
STATUS
approved