Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Mar 21 2023 13:47:07
%S 1,8,156,3800,102340,2919168,86427264,2626557648,81380484900,
%T 2559296511200,81443222791216,2616761264496288,84749038859067856,
%U 2763262653898544000,90615128199047200800,2986287891921565639200,98841887070519004625700
%N The diagonal of 1/(1 - (y + z + x z + x w + x y w)).
%C From _Gheorghe Coserea_, Jul 03 2016: (Start)
%C Also diagonal of rational function R(x,y,z) = 1/(1 - x - y - z - x*y).
%C Annihilating differential operator: x*(2*x+3)*(16*x^2-71*x+2)*Dx^2 + 2*(32*x^3+x^2-213*x+3)*Dx + 8*x^2+48*x-48.
%C (End)
%H Gheorghe Coserea, <a href="/A268543/b268543.txt">Table of n, a(n) for n = 0..310</a>
%H A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, <a href="http://arxiv.org/abs/1507.03227">Diagonals of rational functions and selected differential Galois groups</a>, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
%H S. Eger, <a href="http://arxiv.org/abs/1511.00622">On the Number of Many-to-Many Alignments of N Sequences</a>, arXiv:1511.00622 [math.CO], 2015.
%H Jacques-Arthur Weil, <a href="http://www.unilim.fr/pages_perso/jacques-arthur.weil/diagonals/">Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"</a>
%F Conjecture: 2*n^2*(17*n-23)*a(n) +(-1207*n^3+2840*n^2-1897*n+360)*a(n-1) + 4*(17*n-6)*(-3+2*n)^2*a(n-2) = 0. - _R. J. Mathar_, Mar 11 2016
%F G.f.: hypergeom([1/12, 5/12], [1], 1728*x^3*(2-71*x+16*x^2)/(1-32*x+16*x^2)^3)*(1-32*x+16*x^2)^(-1/4). - _Gheorghe Coserea_, Jul 01 2016
%F 0 = x*(2*x+3)*(16*x^2-71*x+2)*y'' + 2*(32*x^3+x^2-213*x+3)*y' + (8*x^2+48*x-48)*y, where y is the g.f. - _Gheorghe Coserea_, Jul 03 2016
%F a(n) ~ sqrt(3 + 13/sqrt(17)) * (71+17*sqrt(17))^n / (Pi * n * 2^(2*n + 3/2)). - _Vaclav Kotesovec_, Jul 05 2016
%F From _Peter Bala_, Jan 27 2018: (Start)
%F a(n) = binomial(2*n,n)*Sum_{k = 0..n} binomial(n,k)* binomial(2*n+k,k) (apply Eger, Theorem 3 to the set of column vectors S = {[1,0,0], [0,1,0], [0,0,1], [1,1,0]}). Using this binomial sum, Maple confirms the above recurrence of Mathar.
%F a(n) = A000984(n)*A114496(n). (End)
%p A268543 := proc(n)
%p 1/(1-y-z-x*z-x*w-x*y*w) ;
%p coeftayl(%,x=0,n) ;
%p coeftayl(%,y=0,n) ;
%p coeftayl(%,z=0,n) ;
%p coeftayl(%,w=0,n) ;
%p end proc:
%p seq(A268543(n),n=0..40) ; # _R. J. Mathar_, Mar 11 2016
%p #alternative program
%p with(combinat):
%p seq(binomial(2*n,n)*add(binomial(n,k)*binomial(2*n+k,k), k = 0..n), n = 0..20); # _Peter Bala_, Jan 27 2018
%t CoefficientList[Series[HypergeometricPFQ[{1/12, 5/12}, {1}, 1728*x^3*(2 - 71*x + 16*x^2)/(1 - 32*x + 16*x^2)^3]*(1 - 32*x + 16*x^2)^(-1/4), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Jul 05 2016 *)
%o (PARI)
%o my(x='x, y='y, z='z, w='w);
%o R = 1/(1 - x - y - z - x*y);
%o diag(n, expr, var) = {
%o my(a = vector(n));
%o for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
%o for (k = 1, n, a[k] = expr;
%o for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
%o return(a);
%o };
%o diag(10, R, [x,y,z])
%o (PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
%o read("hypergeom.gpi");
%o N = 20; x = 'x + O('x^N);
%o Vec(hypergeom_sym([1/12,5/12],[1],1728*x^3*(16*x^2-71*x+2)/(16*x^2-32*x+1)^3, N)/(16*x^2-32*x+1)^(1/4)) \\ _Gheorghe Coserea_, Jul 03 2016
%Y Cf. A268545-A268555, A000984, A114496.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Feb 29 2016