login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288681
Number of Dyck paths of semilength n such that no positive level has fewer than five peaks.
2
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 7, 98, 575, 2009, 5468, 13365, 30910, 70156, 170830, 531334, 2203895, 10091063, 44034478, 176213307, 650957418, 2258314543, 7491190627, 24204620623, 77794583961, 254583038843, 865776314524, 3087754003802, 11479621448305
OFFSET
0,12
LINKS
MATHEMATICA
b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[k, i - j], i - 1}] b[n - j, k, i], {i, n - j}]]; a[n_]:=If[n==0, 1, Sum[b[n, 5, j], {j, 5, n}]]; Table[a[n], {n, 0, 35}] (* Indranil Ghosh, Aug 10 2017 *)
PROG
(Python)
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, k, j): return 1 if j==n else sum([sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(k, i - j), i)])*b(n - j, k, i) for i in range(1, n - j + 1)])
def a(n): return 1 if n==0 else sum([b(n, 5, j) for j in range(5, n + 1)])
print([a(n) for n in range(36)]) # Indranil Ghosh, Aug 10 2017
CROSSREFS
Column k=5 of A288386.
Cf. A000108.
Sequence in context: A200504 A267641 A267669 * A124092 A036293 A133679
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 13 2017
STATUS
approved