login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288684
Number of Dyck paths of semilength n such that no positive level has fewer than eight peaks.
2
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 335, 4241, 27915, 117971, 373845, 1002089, 2456082, 5725439, 12935530, 28622833, 62588817, 139046970, 353173119, 1305216091, 7035422989, 41539474198, 227550374938, 1115122502718, 4917988882292
OFFSET
0,18
LINKS
MATHEMATICA
b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[k, i - j], i - 1}] b[n - j, k, i], {i, n - j}]]; a[n_]:=If[n==0, 1, Sum[b[n, 8, j], {j, 8, n}]]; Table[a[n], {n, 0, 40}] (* Indranil Ghosh, Aug 10 2017 *)
PROG
(Python)
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, k, j): return 1 if j==n else sum([sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(k, i - j), i)])*b(n - j, k, i) for i in range(1, n - j + 1)])
def a(n): return 1 if n==0 else sum([b(n, 8, j) for j in range(8, n + 1)])
print([a(n) for n in range(41)]) # Indranil Ghosh, Aug 10 2017
CROSSREFS
Column k=8 of A288386.
Cf. A000108.
Sequence in context: A218996 A352798 A113082 * A046747 A338799 A006426
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 13 2017
STATUS
approved