login
A288685
Number of Dyck paths of semilength n such that no positive level has fewer than nine peaks.
2
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 462, 7217, 57783, 289400, 1043781, 3042593, 7833174, 18821247, 43417043, 97550980, 215243289, 469069428, 1020806036, 2342090587, 6886047798, 32238887181, 199504672863, 1232775909721, 6881782444707
OFFSET
0,20
LINKS
MATHEMATICA
b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[k, i - j], i - 1}] b[n - j, k, i], {i, n - j}]]; a[n_]:=If[n==0, 1, Sum[b[n, 9, j], {j, 9, n}]]; Table[a[n], {n, 0, 40}] (* Indranil Ghosh, Aug 10 2017 *)
PROG
(Python)
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, k, j): return 1 if j==n else sum([sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(k, i - j), i)])*b(n - j, k, i) for i in range(1, n - j + 1)])
def a(n): return 1 if n==0 else sum([b(n, 9, j) for j in range(9, n + 1)])
print([a(n) for n in range(41)]) # Indranil Ghosh, Aug 10 2017
CROSSREFS
Column k=9 of A288386.
Cf. A000108.
Sequence in context: A354439 A180087 A233219 * A068235 A247598 A303207
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 13 2017
STATUS
approved