The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A180087 Upper bound for the determinant of a matrix whose entries are a permutation of 1, ..., n^2. 3
 1, 11, 450, 41021, 6865625, 1867994210, 762539814814, 441077015225642, 346335386150480625, 357017114947987625629, 470379650542113331346272, 774869480550211708169959725, 1566955892015559322525350178004 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES Ortwin Gasper, Hugo Pfoertner and Markus Sigg, An Upper Bound for the Determinant of a Matrix with given Entry Sum and Square Sum, JIPAM, Journal of Inequalities in Pure and Applied Mathematics, Volume 10, Issue 3, Article 63, 2008. LINKS Rainer Rosenthal, Table of n, a(n) for n = 1..191 O. Gasper, H. Pfoertner and M. Sigg, An Upper Bound for the Determinant of a Matrix with given Entry Sum and Square Sum JIPAM, vol. 10, Iss. 3, art. 63, 2008. Markus Sigg, Gasper's determinant theorem, revisited, arXiv:1804.02897 [math.CO], 2018. FORMULA a(n) = floor(sqrt(3*((n^5+n^4+n^3+n^2)/12)^n*(n^2+1)/(n+1))). CROSSREFS a(n) is an upper bound for A085000(n). Sequence in context: A175158 A360066 A354439 * A233219 A288685 A068235 Adjacent sequences: A180084 A180085 A180086 * A180088 A180089 A180090 KEYWORD nonn AUTHOR Hugo Pfoertner, Aug 09 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 10 11:06 EDT 2023. Contains 363199 sequences. (Running on oeis4.)