OFFSET
0,2
COMMENTS
If we add a(n) and A288487(n) graphically we obtain a bigger cuboid which is a square of cubes (a cuboid with dimensions n^2 * n^2 * n).
a(10^n) is a palindrome in base 10.
LINKS
Daniel Poveda Parrilla, Table of n, a(n) for n = 0..10000
Daniel Poveda Parrilla, Illustration of initial terms
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
G.f.: (1 + 2*x + 42*x^2 + 50*x^3 + 25*x^4)/(1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
MATHEMATICA
Table[(1 + n)*(1 + n^2)^2, {n, 0, 28}] (* or *) CoefficientList[Series[(1 + 2 x + 42 x^2 + 50 x^3 + 25 x^4)/(1 - x)^6, {x, 0, 28}], x] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 8, 75, 400, 1445, 4056}, 29]
PROG
(PARI) Vec((1 + 2*x + 42*x^2 + 50*x^3 + 25*x^4)/(1 - x)^6 + O(x^28))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Daniel Poveda Parrilla, Jun 11 2017
STATUS
approved