login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288487
Cuboids that fit in square rings from A288486 obtaining a fifth power.
2
1, 8, 75, 400, 1445, 4056, 9583, 20000, 38025, 67240, 112211, 178608, 273325, 404600, 582135, 817216, 1122833, 1513800, 2006875, 2620880, 3376821, 4298008, 5410175, 6741600, 8323225, 10188776, 12374883, 14921200, 17870525, 21268920, 25165831, 29614208
OFFSET
0,2
COMMENTS
If we add a(n) and A288487(n) graphically we obtain a bigger cuboid which is a square of cubes (a cuboid with dimensions n^2 * n^2 * n).
a(10^n) is a palindrome in base 10.
LINKS
Daniel Poveda Parrilla, Table of n, a(n) for n = 0..10000
Daniel Poveda Parrilla, Illustration of initial terms
FORMULA
G.f.: (1 + 2*x + 42*x^2 + 50*x^3 + 25*x^4)/(1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (n + 1)*(n^2 + 1)^2 = (n + 1)*(A002522(n))^2 = (n + 1)*A082044(n).
a(n) = n^5 + A002061(A002061(n+1)).
a(n) = A000584(n+1) - A288486(n)
a(n) = (n + 1)*A059100(n-1) + 4*(n^2 -1)*A014206(n-1) for n > 1.
MATHEMATICA
Table[(1 + n)*(1 + n^2)^2, {n, 0, 28}] (* or *) CoefficientList[Series[(1 + 2 x + 42 x^2 + 50 x^3 + 25 x^4)/(1 - x)^6, {x, 0, 28}], x] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 8, 75, 400, 1445, 4056}, 29]
PROG
(PARI) Vec((1 + 2*x + 42*x^2 + 50*x^3 + 25*x^4)/(1 - x)^6 + O(x^28))
KEYWORD
nonn,easy
AUTHOR
STATUS
approved