login
A145600
a(n) is the number of walks from (0,0) to (0,1) that remain in the upper half-plane y >= 0 using (2*n - 1) unit steps either up (U), down (D), left (L) or right (R).
10
1, 8, 75, 784, 8820, 104544, 1288287, 16359200, 212751396, 2821056160, 38013731756, 519227905728, 7174705330000, 100136810390400, 1409850293610375, 20002637245262400, 285732116760449700
OFFSET
1,2
COMMENTS
Cf. A000891, which enumerates walks in the upper half-plane starting and finishing at the origin. See also A145601, A145602 and A145603. This sequence is the central column taken from triangle A145596, which enumerates walks in the upper half-plane starting at the origin and finishing on the horizontal line y = 1.
REFERENCES
M. Dukes and Y. Le Borgne, Parallelogram polyominoes, the sandpile model on a complete bipartite graph, and a q,t-Narayana polynomial, Journal of Combinatorial Theory, Series A, Volume 120, Issue 4, May 2013, Pages 816-842. - From N. J. A. Sloane, Feb 21 2013
LINKS
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
FORMULA
a(n) = 1/n*binomial(2*n,n+1)*binomial(2*n,n-1).
a(n) = A135389(n-1)/(n+1). - R. J. Mathar, Jul 14 2013
D-finite with recurrence (n+1)^2*a(n) -4*n*(5*n-1)*a(n-1) +16*(2*n-3)^2*a(n-2)=0. - R. J. Mathar, Jul 14 2013
EXAMPLE
a(2) = 8: the 8 walks from (0,0) to (0,1) of three steps are
UDU, UUD, URL, ULR, RLU, LRU, RUL and LUR.
MAPLE
a(n) := 1/n*binomial(2*n, n+1)*binomial(2*n, n-1);
seq(a(n), n = 1..19);
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Peter Bala, Oct 14 2008
STATUS
approved