login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145599
Triangular array of generalized Narayana numbers: T(n,k) = 5/(n+1)*binomial(n+1,k+4)*binomial(n+1,k-1).
5
1, 5, 5, 15, 35, 15, 35, 140, 140, 35, 70, 420, 720, 420, 70, 126, 1050, 2700, 2700, 1050, 126, 210, 2310, 8250, 12375, 8250, 2310, 210, 330, 4620, 21780, 45375, 45375, 21780, 4620, 330, 495, 8580, 51480, 141570, 196625, 141570, 51480, 8580, 495, 715, 15015
OFFSET
4,2
COMMENTS
T(n,k) is the number of walks of n unit steps, each step in the direction either up (U), down (D), right (R) or left (L), starting from (0,0) and finishing at lattice points on the horizontal line y = 4 and which remain in the upper half-plane y >= 0. An example is given in the Example section below.
The current array is the case r = 4 of the generalized Narayana numbers N_r(n,k) := (r + 1)/(n + 1)*binomial(n + 1,k + r)*binomial(n + 1,k - 1), which count walks of n steps from the origin to points on the horizontal line y = r that remain in the upper half-plane. Case r = 0 gives the table of Narayana numbers A001263 (but with an offset of 0 in the row numbering). For other cases see A145596 (r = 1), A145597 (r = 2) and A145598 (r = 3).
LINKS
F. Cai, Q.-H. Hou, Y. Sun, A. L. B. Yang, Combinatorial identities related to 2x2 submatrices of recursive matrices, arXiv:1808.05736 Table 2.1 for k=4.
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
FORMULA
T(n,k) = 5/(n+1)*binomial(n+1,k+4)*binomial(n+1,k-1) for n >=4 and 1 <= k <= n-3. In the notation of [Guy], T(n,k) equals w_n(x,y) at (x,y) = (2*k - n + 2,4). Row sums A003519.
O.g.f. for column k+2: 5/(k + 1) * y^(k+5)/(1 - y)^(k+7) * Jacobi_P(k,5,1,(1 + y)/(1 - y)).
Identities for row polynomials R_n(x) := sum {k = 1..n-3} T(n,k)*x^k:
x^4*R_(n-1)(x) = 5*(n - 1)*(n - 2)*(n - 3)*(n - 4)/((n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)) * sum {k = 0..n} binomial(n + 5,k) * binomial(2n - k,n) * (x - 1)^k;
sum {k = 1..n} (-1)^k*binomial(n,k)*R_k(x^2)*(1 + x)^(2*(n-k)) = R_n(1)*x^(n-2) = A003519(n)*x^(n-2).
Row generating polynomial R_(n+4)(x) = 5/(n+5)*x*(1-x)^n * Jacobi_P(n,5,5,(1+x)/(1-x)). [From Peter Bala, Oct 31 2008]
EXAMPLE
Triangle starts
n\k|...1......2......3......4......5......6
===========================================
.4.|...1
.5.|...5......5
.6.|..15.....35.....15
.7.|..35....140....140.....35
.8.|..70....420....720....420.....70
.9.|.126...1050...2700...2700...1050....126
...
T(5,2) = 5: the 5 walks of length 5 from (0,0) to (1,4) are
UUUUR, UUURU, UURUU, URUUU and RUUUU.
MAPLE
with(combinat):
T:= (n, k) -> 5/(n+1)*binomial(n+1, k+4)*binomial(n+1, k-1):
for n from 4 to 13 do
seq(T(n, k), k = 1..n-3);
end do;
MATHEMATICA
Table[5/(n+1) Binomial[n+1, k+4]Binomial[n+1, k-1], {n, 4, 20}, {k, 0, n}]/.(0-> Nothing)//Flatten (* Harvey P. Dale, Jan 25 2021 *)
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Bala, Oct 15 2008
STATUS
approved