OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Rows n=0..100 of triangle, flattened
H. J. Brothers, Pascal's prism, The Mathematical Gazette, 96 (July 2012), 213-220.
H. J. Brothers, Pascal's Prism: Supplementary Material
FORMULA
T(n,k) = C(n+4,4) * C(n,k), 0 <= k <= n.
For element a in A178819: a_(5, i, j) = (i+3; 4, i-j, j-1), i >= 1, 1 <= j <= i.
G.f.: 1/(1 - x - x*y)^5. - Ilya Gutkovskiy, Mar 20 2020
EXAMPLE
Triangle begins:
1;
5, 5;
15, 30, 15;
35, 105, 105, 35;
70, 280, 420, 280, 70;
MAPLE
T:=(n, k)->binomial(n+4, 4)*binomial(n, k): seq(seq(T(n, k), k=0..n), n=0..9); # Muniru A Asiru, Jan 22 2019
MATHEMATICA
Table[Multinomial[4, i-j, j], {i, 0, 9}, {j, 0, i}]//Column
PROG
(Magma) /* As triangle */ [[Binomial(n+4, 4)*Binomial(n, k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Oct 23 2017
(PARI) {T(n, k) = binomial(n+4, 4)*binomial(n, k)}; \\ G. C. Greubel, Jan 22 2019
(Sage) [[binomial(n+4, 4)*binomial(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 22 2019
(GAP) T:=Flat(List([0..10], n-> List([0..n], k-> Binomial(n+4, 4)* Binomial(n, k) ))); # G. C. Greubel, Jan 22 2019
CROSSREFS
KEYWORD
AUTHOR
Harlan J. Brothers, Jun 19 2010
STATUS
approved