The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A231617 G.f. satisfies: A(x) = (1 - 3*x*A(x)^2) * sqrt(4*A(x)^2 - 3). 2
 1, 1, 8, 75, 788, 8914, 106006, 1306629, 16544772, 213925368, 2812797588, 37494368574, 505536154470, 6882295486576, 94473351706766, 1306171811733083, 18172571198392164, 254235687592867548, 3574318400418780952, 50473259265229118344, 715565619086065023572, 10181073360665458354752 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Self-convolution square yields A231616. LINKS G. C. Greubel, Table of n, a(n) for n = 0..845 FORMULA G.f. A(x) satisfies: (1) A(x) = exp( x*(2*A(x)^4 - 3*A(x)^2/2) + Integral(2*A(x)^4 - 3*A(x)^2/2 dx) ). (2) A(x) = sqrt( (1/x)*Series_Reversion( x*(1-2*x)*(1-6*x)/(1-3*x)^2 ) ). (3) A(x) = sqrt( 1 + x*A(x)^2*(4*A(x)^2 - 3)*(2 - 3*x*A(x)^2) ). (4) A(x) = sqrt( 1 + Sum_{n>=2} 3^(n-2) * n * x^(n-1) * A(x)^(2*n) ). D-finite with recurrence: 4*n*(2*n-1)*(2*n+1)*(109*n^3 - 570*n^2 + 959*n - 522)*a(n) = 8*(2*n-1)*(1853*n^5 - 11543*n^4 + 26548*n^3 - 27922*n^2 + 13188*n - 2160)*a(n-1) - 9*(n-2)*(5341*n^5 - 33271*n^4 + 77057*n^3 - 81281*n^2 + 37626*n - 5760)*a(n-2) + 162*(n-3)*(n-2)*(2*n-5)*(109*n^3 - 243*n^2 + 146*n - 24)*a(n-3). - Vaclav Kotesovec, Dec 20 2013 a(n) ~ c * r^n / (sqrt(Pi)*n^(3/2)), where r = 1/48*(272 + (12606848 - 188352*sqrt(327))^(1/3) + 4*(196982 + 2943*sqrt(327))^(1/3)) = 15.283249955997317489... is the root of the equation 441*r - 272*r^2 + 16*r^3 = 324, and c = 1/2616*sqrt(327)*sqrt((164658779 + 6502068 * sqrt(327))^(1/3)*((164658779 + 6502068 * sqrt(327))^(2/3) + 236857 + 218*(164658779 + 6502068 * sqrt(327))^(1/3)))/((164658779 + 6502068*sqrt(327))^(1/3)) = 0.242927508847491211... is the root of the equation 446464*c^6 - 13952*c^4 -579*c^2 = 9. - Vaclav Kotesovec, Dec 20 2013 EXAMPLE G.f.: A(x) = 1 + x + 8*x^2 + 75*x^3 + 788*x^4 + 8914*x^5 + 106006*x^6 +... Related expansions. 1 - 3*x*A(x)^2 = 1 - 3*x - 6*x^2 - 51*x^3 - 498*x^4 - 5370*x^5 -... sqrt(4*A(x)^2 - 3) = 1 + 4*x + 26*x^2 + 228*x^3 + 2330*x^4 + 25960*x^5 +... 4*A(x)^4 - 3*A(x)^2 = 1 + 10*x + 101*x^2 + 1102*x^3 + 12762*x^4 +... log(A(x)) = x + 15*x^2/2 + 202*x^3/3 + 2755*x^4/4 + 38286*x^5/5 +... MATHEMATICA CoefficientList[Sqrt[1/x*InverseSeries[Series[x*(1-2*x)*(1-6*x)/(1-3*x)^2, {x, 0, 20}], x]], x] (* Vaclav Kotesovec, Dec 20 2013 *) PROG (PARI) {a(n)=polcoeff(sqrt(serreverse(x*(1-2*x)*(1-6*x)/(1-3*x)^2 +x^2*O(x^n))/x), n)} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n)=local(A=1); for(i=1, n, A=exp(x*(2*A^4-3*A^2/2)+intformal(2*A^4-3*A^2/2 +x*O(x^n)))); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n)=local(A=1); for(i=1, n, A=sqrt(1+x*A^2*(4*A^2-3)*(2-3*x*A^2) +x*O(x^n))); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A231616, A228966, A231552, A231553, A231554, A231556, A231615. Sequence in context: A015578 A145600 A268085 * A094735 A067306 A361528 Adjacent sequences: A231614 A231615 A231616 * A231618 A231619 A231620 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 11 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 23:43 EDT 2024. Contains 372666 sequences. (Running on oeis4.)