login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231617
G.f. satisfies: A(x) = (1 - 3*x*A(x)^2) * sqrt(4*A(x)^2 - 3).
2
1, 1, 8, 75, 788, 8914, 106006, 1306629, 16544772, 213925368, 2812797588, 37494368574, 505536154470, 6882295486576, 94473351706766, 1306171811733083, 18172571198392164, 254235687592867548, 3574318400418780952, 50473259265229118344, 715565619086065023572, 10181073360665458354752
OFFSET
0,3
COMMENTS
Self-convolution square yields A231616.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = exp( x*(2*A(x)^4 - 3*A(x)^2/2) + Integral(2*A(x)^4 - 3*A(x)^2/2 dx) ).
(2) A(x) = sqrt( (1/x)*Series_Reversion( x*(1-2*x)*(1-6*x)/(1-3*x)^2 ) ).
(3) A(x) = sqrt( 1 + x*A(x)^2*(4*A(x)^2 - 3)*(2 - 3*x*A(x)^2) ).
(4) A(x) = sqrt( 1 + Sum_{n>=2} 3^(n-2) * n * x^(n-1) * A(x)^(2*n) ).
D-finite with recurrence: 4*n*(2*n-1)*(2*n+1)*(109*n^3 - 570*n^2 + 959*n - 522)*a(n) = 8*(2*n-1)*(1853*n^5 - 11543*n^4 + 26548*n^3 - 27922*n^2 + 13188*n - 2160)*a(n-1) - 9*(n-2)*(5341*n^5 - 33271*n^4 + 77057*n^3 - 81281*n^2 + 37626*n - 5760)*a(n-2) + 162*(n-3)*(n-2)*(2*n-5)*(109*n^3 - 243*n^2 + 146*n - 24)*a(n-3). - Vaclav Kotesovec, Dec 20 2013
a(n) ~ c * r^n / (sqrt(Pi)*n^(3/2)), where r = 1/48*(272 + (12606848 - 188352*sqrt(327))^(1/3) + 4*(196982 + 2943*sqrt(327))^(1/3)) = 15.283249955997317489... is the root of the equation 441*r - 272*r^2 + 16*r^3 = 324, and c = 1/2616*sqrt(327)*sqrt((164658779 + 6502068 * sqrt(327))^(1/3)*((164658779 + 6502068 * sqrt(327))^(2/3) + 236857 + 218*(164658779 + 6502068 * sqrt(327))^(1/3)))/((164658779 + 6502068*sqrt(327))^(1/3)) = 0.242927508847491211... is the root of the equation 446464*c^6 - 13952*c^4 -579*c^2 = 9. - Vaclav Kotesovec, Dec 20 2013
EXAMPLE
G.f.: A(x) = 1 + x + 8*x^2 + 75*x^3 + 788*x^4 + 8914*x^5 + 106006*x^6 +...
Related expansions.
1 - 3*x*A(x)^2 = 1 - 3*x - 6*x^2 - 51*x^3 - 498*x^4 - 5370*x^5 -...
sqrt(4*A(x)^2 - 3) = 1 + 4*x + 26*x^2 + 228*x^3 + 2330*x^4 + 25960*x^5 +...
4*A(x)^4 - 3*A(x)^2 = 1 + 10*x + 101*x^2 + 1102*x^3 + 12762*x^4 +...
log(A(x)) = x + 15*x^2/2 + 202*x^3/3 + 2755*x^4/4 + 38286*x^5/5 +...
MATHEMATICA
CoefficientList[Sqrt[1/x*InverseSeries[Series[x*(1-2*x)*(1-6*x)/(1-3*x)^2, {x, 0, 20}], x]], x] (* Vaclav Kotesovec, Dec 20 2013 *)
PROG
(PARI) {a(n)=polcoeff(sqrt(serreverse(x*(1-2*x)*(1-6*x)/(1-3*x)^2 +x^2*O(x^n))/x), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); for(i=1, n, A=exp(x*(2*A^4-3*A^2/2)+intformal(2*A^4-3*A^2/2 +x*O(x^n)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); for(i=1, n, A=sqrt(1+x*A^2*(4*A^2-3)*(2-3*x*A^2) +x*O(x^n))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 11 2013
STATUS
approved