The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A231617 G.f. satisfies: A(x) = (1 - 3*x*A(x)^2) * sqrt(4*A(x)^2 - 3). 2
1, 1, 8, 75, 788, 8914, 106006, 1306629, 16544772, 213925368, 2812797588, 37494368574, 505536154470, 6882295486576, 94473351706766, 1306171811733083, 18172571198392164, 254235687592867548, 3574318400418780952, 50473259265229118344, 715565619086065023572, 10181073360665458354752 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Self-convolution square yields A231616.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = exp( x*(2*A(x)^4 - 3*A(x)^2/2) + Integral(2*A(x)^4 - 3*A(x)^2/2 dx) ).
(2) A(x) = sqrt( (1/x)*Series_Reversion( x*(1-2*x)*(1-6*x)/(1-3*x)^2 ) ).
(3) A(x) = sqrt( 1 + x*A(x)^2*(4*A(x)^2 - 3)*(2 - 3*x*A(x)^2) ).
(4) A(x) = sqrt( 1 + Sum_{n>=2} 3^(n-2) * n * x^(n-1) * A(x)^(2*n) ).
D-finite with recurrence: 4*n*(2*n-1)*(2*n+1)*(109*n^3 - 570*n^2 + 959*n - 522)*a(n) = 8*(2*n-1)*(1853*n^5 - 11543*n^4 + 26548*n^3 - 27922*n^2 + 13188*n - 2160)*a(n-1) - 9*(n-2)*(5341*n^5 - 33271*n^4 + 77057*n^3 - 81281*n^2 + 37626*n - 5760)*a(n-2) + 162*(n-3)*(n-2)*(2*n-5)*(109*n^3 - 243*n^2 + 146*n - 24)*a(n-3). - Vaclav Kotesovec, Dec 20 2013
a(n) ~ c * r^n / (sqrt(Pi)*n^(3/2)), where r = 1/48*(272 + (12606848 - 188352*sqrt(327))^(1/3) + 4*(196982 + 2943*sqrt(327))^(1/3)) = 15.283249955997317489... is the root of the equation 441*r - 272*r^2 + 16*r^3 = 324, and c = 1/2616*sqrt(327)*sqrt((164658779 + 6502068 * sqrt(327))^(1/3)*((164658779 + 6502068 * sqrt(327))^(2/3) + 236857 + 218*(164658779 + 6502068 * sqrt(327))^(1/3)))/((164658779 + 6502068*sqrt(327))^(1/3)) = 0.242927508847491211... is the root of the equation 446464*c^6 - 13952*c^4 -579*c^2 = 9. - Vaclav Kotesovec, Dec 20 2013
EXAMPLE
G.f.: A(x) = 1 + x + 8*x^2 + 75*x^3 + 788*x^4 + 8914*x^5 + 106006*x^6 +...
Related expansions.
1 - 3*x*A(x)^2 = 1 - 3*x - 6*x^2 - 51*x^3 - 498*x^4 - 5370*x^5 -...
sqrt(4*A(x)^2 - 3) = 1 + 4*x + 26*x^2 + 228*x^3 + 2330*x^4 + 25960*x^5 +...
4*A(x)^4 - 3*A(x)^2 = 1 + 10*x + 101*x^2 + 1102*x^3 + 12762*x^4 +...
log(A(x)) = x + 15*x^2/2 + 202*x^3/3 + 2755*x^4/4 + 38286*x^5/5 +...
MATHEMATICA
CoefficientList[Sqrt[1/x*InverseSeries[Series[x*(1-2*x)*(1-6*x)/(1-3*x)^2, {x, 0, 20}], x]], x] (* Vaclav Kotesovec, Dec 20 2013 *)
PROG
(PARI) {a(n)=polcoeff(sqrt(serreverse(x*(1-2*x)*(1-6*x)/(1-3*x)^2 +x^2*O(x^n))/x), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); for(i=1, n, A=exp(x*(2*A^4-3*A^2/2)+intformal(2*A^4-3*A^2/2 +x*O(x^n)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); for(i=1, n, A=sqrt(1+x*A^2*(4*A^2-3)*(2-3*x*A^2) +x*O(x^n))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A015578 A145600 A268085 * A094735 A067306 A361528
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 11 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 23:43 EDT 2024. Contains 372666 sequences. (Running on oeis4.)